Aerospace Autonomous Systems

Mitch Ingham

Jet Propulsion Laboratory

Jack W. Langelaan
Aerospace Engineering, The Pennsylvania State University

Deep Space 1

Mars Exploration Rover

Terrestrial Planet Finder

Human/robot interaction

Mars sample return

Deep Impact

Earth Observing 1

Aerosonde

Global Hawk

Global Observer

unmanned combat air vehicle

Vulture

National Airspace

Challenges and Opportunities

Challenges

- Closing the gap in technological readiness
- Reliability
- New tools and training needed
- cultural hurdle: perceived risk

Opportunities

- Enabler for certain missions
- Operational cost savings
- robustness: increased ability to fly through failure

The line-up...

Mark Campbell

Intelligent Autonomy in Robotic Systems
Associate Professor, Mechanical and Aerospace Engineering
Cornell University

Chad Frost

Challenges and Opportunities for Autonomous Systems in Space Acting Lead, Autonomous Systems and Robotics Section Intelligent Systems Division, NASA Ames

Stefan Bieniawski

Role of Health Awareness in Systems of Multiple Autonomous Aerospace

Associate Technical Fellow
Boeing Research and Technology

Ella Atkins

Vehicles

Certifiable Autonomous Flight Management for Unmanned Aircraft Systems

Associate Professor, Aerospace Engineering University of Michigan